Formation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid.
نویسندگان
چکیده
Free radical-initiated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. Docosahexaenoic acid is the most abundant unsaturated fatty acid in the central nervous system. We have shown previously that this 22-carbon fatty acid can yield, upon oxidation, isoprostane-like compounds termed neuroprostanes, with E/D-type prostane rings (E(4)/D(4)-neuroprostanes). Eicosanoids with E/D-type prostane rings are unstable and dehydrate to cyclopentenone-containing compounds possessing A-type and J-type prostane rings, respectively. We thus explored whether cyclopentenone neuroprostanes (A(4)/J(4)-neuroprostanes) are formed from the dehydration of E(4)/D(4)-neuroprostanes. Indeed, oxidation of docosahexaenoic acid in vitro increased levels of putative A(4)/J(4)-neuroprostanes 64-fold from 88 +/- 43 to 5463 +/- 2579 ng/mg docosahexaenoic acid. Chemical approaches and liquid chromatography/electrospray ionization tandem mass spectrometry definitively identified them as A(4)/J(4)-neuroprostanes. We subsequently showed these compounds are formed in significant amounts from a biological source, rat brain synaptosomes. A(4)/J(4)-neuroprostanes increased 13-fold, from a basal level of 89 +/- 72 ng/mg protein to 1187 +/- 217 ng/mg (n = 4), upon oxidation. We also detected these compounds in very large amounts in fresh brain tissue from rats at levels of 97 +/- 25 ng/g brain tissue (n = 3) and from humans at levels of 98 +/- 26 ng/g brain tissue (n = 5), quantities that are nearly an order of magnitude higher than other classes of neuroprostanes. Because of the fact that A(4)/J(4)-neuroprostanes contain highly reactive cyclopentenone ring structures, it would be predicted that they readily undergo Michael addition with glutathione and adduct covalently to proteins. Indeed, incubation of A(4)/J(4)-neuroprostanes in vitro with excess glutathione resulted in the formation of large amounts of adducts. Thus, these studies have identified novel, highly reactive A/J-ring isoprostane-like compounds that are derived from docosahexaenoic acid in vivo.
منابع مشابه
Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway.
Neuroprostanes are prostaglandin-like compounds produced by free radical-induced peroxidation of docosahexaenoic acid, which is highly enriched in the brain. We previously described the formation of highly reactive gamma-ketoaldehydes (isoketals) as products of the isoprostane pathway of free radical-induced peroxidation of arachidonic acid. We therefore explored whether isoketal-like compounds...
متن کاملInsights into oxidative stress: the isoprostanes.
Oxidative stress, characterized by an imbalance between increased exposure to free radicals and antioxidant defenses, is a prominent feature of many acute and chronic diseases and even the normal aging process. However, definitive evidence for this association has often been lacking due to recognized shortcomings with methods previously available to assess oxidant stress status in vivo in human...
متن کاملIsoprostanes.
The isoprostanes (IsoPs) are a unique series of prostaglandin-like compounds formed in vivo via a nonenzymatic mechanism involving the free radical-initiated peroxidation of arachidonic acid. This article summarizes our current knowledge of these compounds. Herein, a historical account of their discovery and the mechanism of their formation are described. A specific class of IsoPs, the F2-IsoPs...
متن کاملNeurofurans, novel indices of oxidant stress derived from docosahexaenoic acid.
Isoeicosanoids are free radical-catalyzed isomers of the enzymatic products of arachidonic acid. They are formed in situ in cell membranes, are cleaved, circulate, and are excreted in urine. Isomers of prostaglandin F(2alpha), the F(2)-isoprostanes, have emerged as sensitive indices of lipid peroxidation in vivo. Analogous compounds formed from docosahexaenoic acid (DHA) are termed neuroprostan...
متن کاملFormation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid.
Omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) found in marine fish oils are known to suppress inflammation associated with a wide variety of diseases. Eicosapentaenoic acid (EPA) is one of the most abundant omega-3 fatty acids in fish oil, but the mechanism(s) by which EPA exerts its beneficial effects is unknown. Recent studies, however, have demonstrated that oxidized EPA, rather than...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 39 شماره
صفحات -
تاریخ انتشار 2002